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ON THE STABILITY OF THE STEADY-STATE MOTIONS OF SYSTEMS 
WITH QUASICYCLIC COORDINATES* 

V.V. RUMYANTSEV 

The stability of the steady-state motions of a system with quasicyclic 
coordinates under the action of potential and dissipative forces and 
also forces which depend on the quasicyclic velocities is investigated. 
The results are applied to the problem of the stability of the steady- 
state plane-parallel motions of a rotor on a shaft which is set up in 
elasticated bearings with a non-linear reaction /l/. 

The stability of the stationary motions and relative equilibria of 
systems with a single cyclic (quasicyclic) coordinate has previously 
been investigated /2/ from a common point of view. The question of the 
stability of the stationary motions of systems with quasicyclic coordinates 
under the action of constant and dissipative forces has been considered 
in /3/. The results obtained in /2/ have been generalized /4/ to 
systems with several cyclic (quasicyclic) coordinates and, additionally, 
a third regime of uniform motions, which includes the regime considered 
in /3/, has also been investigated. 

1. Let us consider a holonomic mechanical system which is characterized by a Lagrange 
function 15 = L (Qit qi', vi), where qi (i = 1, ., k),cpj (j = k $- 1, . . ., n) are generalized coordinates 
and qi’s dqildt, ‘pi’s dT,ldt are the generalized velocities of the system and, moreover, the 
function L is explicitly independent of the coordinates Cpj and the time t. Such a system with 
cyclic coordinates 'pj may execute stationary motions 

Qi = Qio, pi' = 0; Cpj’ = Ojp Cpj = 6Jjt + Cpjo (1.1) 

in which the positional coordinates qi and the cyclic velocities mj' remain constant over the 
whole time of the motion. At the same time the constants oj are either specified arbitrarily 
within certain limits and the constants qiO are determined from the equations 

aLlag, = 0 (1.2) 

in which it follows to put qi’ = O,cpj’ = oj or qiO and oj are determined from Eqs. (1.2) andthe 
first integrals of the equations of motion 

3LlaCpj’ = Cj (1.3) 

in which follows to put qi’ = O;cj are arbitrary constants of integration. Here and everywhere 
subsequently 

i,l=1,..., k; j,s=k+l,..., n_ 

*Prikl.Matem.Mekhm.,50,6,918-927,1986 
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unless something to the contram] is indicated. 
Let us consider the case when the generalized potential forces Qi(q,q’,q’) and mj (q,q’,rp*) act 
on the system. In the case when @,,fO, the coordinates 9p1 are called quasicyclic coordinates. 
A system with quasicyclic coordinates may also execute motions of the form (1.1) if the 
coditions 

c%&, + Qi = 0, dr, = 0 (1.4) 

are satisfied when qi’ = 0. 

The values of the constants qro and Oj which satisfy conditions (1.4), generally speaking, 
will differ from their values in the stationary motion of a system with cyclic coordinates 
only if the conditions 

are not satisfied for them. 
Several cases of (1.5) are considered in /4/. 
As a rule, in the case of a system with quasicyclic coordinates subjected to specified 

generalired forces, the constants oj as well as the constants qio are determined from Eqs. 
(1.4) which we shall subsequently assume to be solvable. 

It is convenient /4/ to pass from the variables yj to the variables 

$j = qj - Wjt 
(1.6) 

After substitution of the variables (1.61, the Lagrange function (we shall retain the previous 
notation for it) will have the structure 

where L, fq,q', y) are the homogeneous powers a = 0,1,2 of the form of the variables q;, Ej’. 

The Lagrange equations of motion of the system have the form 

(1.7) 

The solutions of Eqs.Cl.7) 

correspond to the steady state motions (1.1). 
we next assume that the form of L*(Q.~',F;') is such as to be a strictly negative function 

Of Pi’! Ej’ and that the function L,(qi) is expandable in a Taylor series in the neighbourhood 
of (1.8). 

By multiplying Eqs.Cl.7) by qi’,gi and summing over all ’ i,j, we obtain the enesgy 
equation 

where the generalized energy 

H (a, P', E') = J% (% B“ Y, - Lo (Q) (1.10) 

Eq.11.9) will be used when investigating the stability of the motions (1.8) when different 
assumptions are made concerning the generalized forces Qt and @]. 

2. Let us first consider the case when the generalized forces are such that the quasi- 
cyclic velocities retain their specified constant values over the whole time of the motion 

/2, 4/ 
cpj’ = oj; or gj’ = 0 W) 

whatever the values of qi and qt‘ may be. It is obvious from the second group of Eqs.Cl.7) 
that the equalities (2.1) will hold subject to the conditions 

(2.2) 

and the initial conditions EJO' = 0. When these conditions are satisfied, the second group of 
Eqs.(1.7) is identically satisfied and the problem reduces to the investigation of just the 
first group of Eqs.(l.‘l) which can be treated as the equations of motion of a system with k 
degrees of freedom. 

In this case Eq.Cl.9) takes the form 

&yw k -= 
dt .z QiYi' (ffm (q, 4’) = H (q, q’+ 0) = L, (9. q’, ‘3 - Lo (d + Lo k4) 

i=1 
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Let us now consider the case when there are no generalized forces Qi,i.e. Qi = 0. In 
this case, the first k equations of (1.4) reduce to the equations 

aL,laq, = 0 (2.4) 
which signify that the function L,,(q) has a stationary value of the motion (1.8). 

On the basis of Lagrange's theorem concerning the stability of an equilibrium /5/ and 
its generalization to stability with respect to some of the variables /6/, we conclude that, 
if the function L,(q) has an isolated maximum in the case of the motion (1.8) (the function 

L* (9) - Lll (go) is strictly negative with respect to the variables q,(r = 1, . . ;,m < k)), the 
motion (1.8) is stable with respect to the variables qr(q,) and ql’, 

According to the application of Lagrange's theorem and to the Kelvin-Chetayev theorems 
151, we conclude that, if the function L,(q)- L,(q,) can take positive values in as small a 
neighbourhood of pi = qio as may be desired and the number'of positive coefficients accompany- 
ing the squares of the variables in the quadratic part of the expansion of this function in 
a Taylor's series is odd, the motion (1.8) is unstable. Gyroscopic stabilization is possible 
when there is an even number of such coefficients, If dissipative forces which are derivatives 
of a function f (81 cl’), whish is strictly negative, with respect to qi’ act on the system in 
its perturbed motion in the neighbourhood of (1.81, the motion (1.8) which is stable under 
potential forces becomes asymptotically stable, an unstable motion remains unstable, and 
gyroscopic stabilization breaks down. 

Let us now consider the case when dissipative forces which are derivatives of the 
strictly negative function 

(2.5) 

with constants coefficients oti = p*i with respect to qie, qj’ act on the system and on any 
part of its motion. In this case conditions (2.1) are ensured by the application of the 
generalized forces 

The equations of motion (1.7) have solutions of the form (1.8) subject to the conditions 

(2.7) 

It follows 
&,(q) does not 

from Eqs.(2.7) that, when ti,+O in the case of the motion (1,8), the function 
have a stationary value. 

By putting Pi = Qio -t rl in the perturbed motion and expanding the function L0 67) in a 
power series in Xl 

we reprsent Eq. (2.31, taking account of (2.71, in the form 

pi jxi’x j* 

i, ;=I 
(2.9) 

The dotted line denotes a set of terms of a higher order of smallness. 
Using Eq.(2.9), we conclude on the basis of the Kelvin-Chetayev theorems /5/ that, if 

the second variation 

of the function L,(q) is strictly negative in the neighbourhood of the motion (1.81, the 
motion (1.8) is asymptotically stable with respect to the variables qi,qi’. If, however, 62Lo 
can take positive values in any neighbourhood of (1.8) no matter how small it is, then this 
motion is unstable. In the case when the right-hand side of Eq.(2.9) is at all times solely 
of negative form, the set 2 Bijqi’qj’=O does not contain complete motions apart from qi’ = 0, 

i. j 
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and PL, is a strictly negative function, the motion (1.8) is asymptotically stable according 
to the Barbashin-Krasovskii theorem /7/. If, however, @L, takes positive values then, 
according to the Krasovskii theorem /7f, the motion (1.8) is unstable. 

3. bet us now drop the assumption that the forces (2.2) or (2.6) are applied to the 
system and that equalities (2.1) are satisfied and consider the motion of a system with quasi- 
cyclic coordinates under the action of potential forces , which are derivatives of the Lagrange 
function L (Q, q’, f’), and the generalized forces 

where j(q',cp') is the dissipative function (2.5) with complete dissipation and F, (v = 1, . . ..n) 
are certain additional forces. Conditions (1.4) for the existence of solutions of the form 
of (1.8) now take the form 

The case when Fy = const. has been investigated previously in /3/. In this case, taking 
account of (3.1) and (3.2), Eq.cl.9) takes the form 

or, when account is taken of (2.81, 

dlW/dt = 2j (xi’, f)‘) 
(HO (2, a’, 5’) = L, (qto + zi, Xi., E,‘) - 62LO + . . .) 

Using Eq.(3.3), we conclude on the basis of the Kelvin-Chetayev theorems /5/ that the 
unperturbed motion (1.8) is asymptotically stable with respect to the variables Qi? 41‘9 51 
provided that the second variation PLO of the function L,(q) is strictly negative, but 
unstable if PL, can take positive values in any neigbbourhood of (1.81, no matter how small. 

Let us now consider the case when the additional forces F,,which are continuous functions 
of mj' andpossess continuous partial derivatives of up to the second order inclusive 

F, = F, (rph+;, . . ., cp,‘) (v = 1, . . ., n) 

are such that Eqs.(3.2) have solutions (1.8). 
Since, in the perturbed motion, we shall have 

(3.4) 

after substitution of (1.6), Eq.(1.9) , when account is taken of (3.1), (3.2), and (3.5), 
takes the form 

(3.6) 

According to the Kelvin-Chatayev theorems /5/, if the right-hand side of Eq.(3.6) is 
a strictly negative function of xi', Ed', the unperturbed motion (1.8) is asymptotically stable 
with respect to the variables qi,ql’, %,’ in the case of a strictly negative second variation 

@Lo, and unstable if @LB can take positive values. 
Finally, let us consider the case when there are no dissipative forces and the generalized 

forces acting on the system have the form (3.1) when j = 0, the forces P, are of the form 
of (3.41, and F1 = 0. In this case the first k equations of (3.2) take the form (2.4) and 
the last n-k equations of (3.2) take the form 

F, (Ok+*, . . -, %a) = 0 (3.7) 

Subject to the condition that the Jacobian of system (3.7) differs from zero, this 
system enables one to find the values V'j' = @j, for which the motion (1.8) holds. Eq.fl.9) 
takes the form 

$-==: 2 (~)o~,.E,.+... 
j, s4+1 

(3.8) 
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(H@) (x, r', E') = L2 (4ro + rir Xi.9 Si'f - &I (YiO i r6) 5 & (4iO)) 

Consequently, if the right-hand side of Eq_(3.8) is strictly negative and the set Ej‘ = 0 
does not contain any complete motions of the system, apart from (1.8), the motion (1.8) is 
asymptotically stable with respect to ql,qi', gj’ in the case when the function L,(q) has an 
isolated maximum but unstable if L,(q)- L,(q,) can take positive values in any neighbourhood 
of gi = qior no matter how small. 

On comparing this result with the conclusion drawn in Sect.2 concerning the stability 
of the motion when there are no dissipative forces acting, we conclude that forces of the 
type of (3.4) and (3.7) stabilize the motion, which is steady in the case of an isolated 
maximum of the function L,(q) to an asymptotical1 y stable motion subject to the conditions 
that the right-hand side of Eq.(3.8) is strictly negative and that there are no complete 
motions in the set E,' = 0 apart from (1.8). 

In the special case of additional forces of the form Fi(ry;), the conditions that the 
right-hand side of Eq.(3.8) should be strictly negative reduce to the obvious inequalities 

(~~j/&~‘)pj’=Oj < O 

Since the nature of the extremum of the function l+(q) is determined by its second 
variation PLO in the majority of cases, the sufficient conditions for the stability of the 
motion (1.8) reduce in practice in all of the cases which have been considered above to the 
strict negativeness of PL,. 

4. As an example, letusconsiderthe problem of the stability of the steady-state motions 
of an absolutely solid rotor of mass m with a vertical axis set up in elasticated bearings 
which, in the general case, exert non-linear reactions. These bearings are rigidly clamped 
on to a fixed mounting. This problem, which is of great interest in machine construction, 
has served as the example in the investigations of many authors (see the bibliography in /l/j. 
The results are also applicable to the case of the plane-parallel motion of a rotor rotating 
on an isotropic inertialess flexible shaft /5/. 

Let us assume /l/ that the non-linear reactions of the bearings are reduced to a single 
equivalent reaction mF(p) which is solely dependent on the radial displacement p=O,O of 
the axis 0 of the rotor and is directed along the straight line 00, to the point-O, where 
the plane of the motion of the centre of mass C intersects the axis of the undeformed bearings 
and that F(0) =0 and the derivatives dFldp > 0 and daFldp2 are continuous within the 
limits of admissible deformations of the bearings. We shall take the point 0, as the origin 
of a fixed system of coordinate axes 0,xyz with a vertical axis z. The eccentricity e = OC. 

In the case of plane-parallel motion a free solid body has three degrees of freedom, and 
three independent variables are sufficient to define its position. Correspondingly, we shall 
have three equations of motion for the rotor which can be obtained from the laws of motion of 
the centre of mass (two equations) and the change in the angular moments relative to the 
centre of mass (one equation) /8/ or from linear combinations of these equations. The 
Lagrange equations, the mechanical sense of which depends on the particular coordinate system 
which is chosen, turn out to be the most convenient in many cases. For example, if the polar 
coordinates r,O of the centre of mass C and the angle x between 0,C and the eccentricity 
e = co are taken as the coordinates of the rotor /5/ such that p2 = rs + e2 - 2tecos x, the 
Lagrange function will be equal to 

where k is the central radius of inertia. 
When this is done, the Lagrangian equations of motion have the simplest form and they 

express, respectively, as can readily be seen, the theorems on the motion of the centre .of 
mass (in a projection on the direction of the radius-vector r) and on the angular momentum 
realtive to the points 0, and C. 

In the variables p,'p,$, where p,'p are the polar coordinates of the point 0 and 9 is 
the angle between the x -axis and the straight line OC, the Lagrange function /l/ is 

where k. is the radius of inertia for the point 0. In these variables, the Lagrange equations 
express the theorem on the motion of the centre of mass (in a projection on the direction of 
the radius-vector p), a consequence of which is that 

(4.2) 

p-sin (tp- Fp)) + .%Va- 2 1 P(p)+] 
(I 

dldt(p X mv,) - v. X'mv, = 0 (4.3) 
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and the theorem on the angular momentum relative to the point 0 

dG,ldt + v,, x mv, = 0 (4.4) 

where v, and v0 are the velocities of the points C and 0 and G, is the angular momentum 
realtive to the point 0. 

Not one of the coordinates p, cp, 9 is cyclic but, nevertheless, the equations of motion 
have the area integral 

aL/acp‘ f aLta$ = 

m I$cp‘ + e (9’ -i- $1 p cos (4 - (p) - ep’ sin (9 - cp) + 
k&.1 = const 

(4.5) 

as a consequence of the obvious equality aLIBq + aLli+$ = 0. This integral (in vector form) 
also follows from Eqs.(4.3) and (4.4) and, by combining them, we obtain the integral 

G, = G, + p x mv, = const 

which is equivalent to (4.5). Here Go, is the angular moments relative to the point 0,. 
The variables (p,g occur in the function (4.2) solely in the form of their difference 

9 ==q - rp and it is therefore natural to replace one of them by the variable whereupon the 
second of the variables (p,$ becomes a cyclic coordinate. For instance, if p,e,ll, are taken 
as the coordinates of the rotor, the coordinate 4 will be a cyclic coordinate and a first 
integral, analogous to (4.5) corresponds to it. At the same time, unlike Eq.(4.4), the 
Lagrange equation for the variable 9 expresses the theorem on the angular momentum relative 
to the point 0,. If the variables p,B,s 29 - ot, are taken as the coordinates of the rotor, 
the function (4.2) takes the form 

L=~[p'2+p2(~+,-~)*+2e(~+W)(p(g'+~-87 x 

sosO--pp'sinO)$ ko2(F +@-- 2[ F(p)@] 
(I 

(4.6) 

The Lagrange equation for the variable 5 leads to the area integral 

LYL/cY~ = m I$ (E’ + 0 - e’) + e (p (2 (E’ + 0) - 
@) cos 0 - p’ sin 8) + k,” (E’ + w)] = mc = eonst 

(4.71 

which is equivalent to (4.5) while the equations for e and 0 have the same meaning as when 
the equations are written in the variables p, rp,+. 

5. Let us now considerthemotion of the rotor when there are no dissipative forces but 
subject to the condition that the moment due to forces of the form of (2.2) is applied to its 
axis. This ensures the constancy of the inherent angular velocity of rotation $' = o(r = 0). 
where w is a specified constant. It is readily seen that the moment 

M = meF (p)sin f) (5.1) 

ensures the required condition. 
It can be seen from (4.6) that the function L*(9) for the rotor is equal to 

Lo(p,6)=~[(p2+2epcos~)03-2 Fb)dP SC 1 
0 

Equations of the form (2.4) have the solution 

p=F,e=,’ (5.3) 

subject to the conditions that the constants r, y satisfy the equations 

a8 (r + e co.3 y) = F (r), sin y = 0 .(5.4) 

Eqs.(5.4) have been investigated in /I/. The values y= O,Z are found from the second 
equation of (5.4). The two forms of steady-state motion of the rotor, in which the points 

0,. 0 and C lie on a single line which rotates around 0,.with an angular velocity W* correspond 
to these values. When y = 0, thepoint Oliesbetween the points O1 and C and, when y=s,the 
point C lies between the points O1 and 0. The approximate form of the amplitude-frequency 
characteristic 

0% = F (r)/(r * e) 15.5) 
is depicted in Pig.1 of /l/ and the skeletal curve 

0 = YI (r), xx (r) = F (r)/r 
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divides the curve (5.5) into left-hand (7=0) and riqht-hand (y=n) branches. The upper sign 
in (5.5) to (5.7) refers to the left-hand branch and the lower sign to the right-hand branch. 
Equations are derived from (5.4) which determine the coordinates of the point of bifurcation 
K at which the tangent to the curve (5.5) is parallel to the r axis 

(r k c) F' (r) = F (r), o* = F’ (I) (5.6) 

The stability of the motion (5.3) has been investigated to a first approximation in /l/. 
We shall investigate it on the strength of the full equations. According to the results of 
paragraph 2, the conditions for the strict negativeness of the second variation of the function 
(5.2) for the solution (5.3) 

F' (9 > o', 7 met c0= < 0 (5.7) 

are sufficient conditions for the stability of the motion (5.3) of the rotor with respect to 
the variables p, 8, p' and 8'. 

Inequalities (5.7) can only be satisfied for the whole of the left-hand branch of (5.5) 

(v = 0) if there is no point of bifurcation K on it (the case of a rigid characteristic) or 
on the part of this branch from the origin of coordinates up to the point X, if there is a 
point of bifurcation on this branch (in the case of a soft characteristic). The second of 
inequalities (5.7) is not satisfied on the right-hand branch (y =x) as it has the opposite 
sign for all points of this branch and gyroscopic stabilization is possible for those points 
of the second branch for which the first of inequalities (5.7) also has the opposite sign. 
In fact, such stabilization occurs in the first approximation fl/. 

If dissipative forces with complete dissipation which are derivatives of the strictly 
negative Rayleigh function 21 (rlr x2. x1', re') with respect to xi' where .~==p--r,j1~=e-y, 
act on the rotor in its perturbed motion, the motion (5.3), which is stable under conditions 
(5.7), becomes asymptotically stable and the gyroscopic stabilization breaks down. 

A resistive force which is proportional to the velocity of the radial displacement of 
the centre 0 of the rotor and arises due to the formation oftheroller bearings also turns 
out to have a similar effect on the stability of the motion of the rotor /9/. In this case 
the dissipative function has the form 2ffp‘) = --rn~~'~, p >0 and, in order to ensure that 
the condition 'Ip' = o is satisfied, the motor must develop a moment which differs from ex- 
pression (5.1) by the addition of the term mepp'sinff. At the same time the equations for the 
steady-state motions have the previous form (5.4) and the conditions for the strict negativeness 
of PLO reduce to the inequalities (5.7). The set f(p’) = 0 is p' = 0, i.e. p = p. = const 
and the equations of motion of the rotor take the form 

p. (0 - Qz + 6P dcos 6 = F (p,), p6e** + w2 e sin 8 = 0 (5.8) 

In the general case when g# 0 these equations are incompatible since, from the first 
equation, we have 

8&0X+- Jpo ~~(~)-~~e00se 

and, as the result of integration, the second yields 

where C is a constant of integration. It follows fromthisthat Eqs.(5.8) do not have solutions 
p,,=const when 8'+0. If, however, 8' = 0, 9 = y,. p = pot the constants p,, and y must 
satisfy the equations 

0% (p. + ecos y) = F(p,), sin y = 0 

which are identical to Eqs.(5.4). Consequently, the set f (p') = 0, does not contain any 
complete perturbed motions apart from (5.3). On the basis of the Barbashin-Krasovskii theorem, 
we conclude that, subject to conditions (5.71, the motion (5.3) of the rotor under the action 
of a dissipative force - mpp’ becomes asymptotically stable with respect to 0, 9, p-,8. Should 
these conditions not be satisfied, when one or both of inequalities (5.7) have opposite signs, 
the motion (5.3) is unstable according to Krasovskii's theorem /7/, 

Let us now drop the assumption that there is a constant characteristic angular velocity 
of rotation 9 and consider the case when the motor develops a moment m&f@*) and there are 
no dissipative forces /I/. In this case Eqs.(2.4) have the form (5.4) and Eqs.(3.7) reduce 
to a single equation 

M(o)=0 (5.9) 
and, moreover, the right-hand side of the equation of the form of (3.8) will be equal to 
(dM/d$),~2. It is obvious that, when E' = 0, the equations of the perturbed motion of the 
rotor do not admit of complete motions apart from (5.3). Consequently, subject to the condition 

(dM/d$-)o < 0 (5.10) 
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the motion (5.3) of the rotor will be either asymptotically stable with respect to the variables 
P. %P', 8's E'. if the inequalities (5.7) are satisfied, or unstable, if one or both of the 
inequalities (5.7) have opposite signs. 

We note that, subject to condition (5.10), a motor with a moment ~(~*~ produces an effect 
in the perturbed motion which is similar to a force which is dissipative with respect to E'. 
This is explained by the destabilizing effect /l/ of such a motor compared with a motor which 
ensures a constant velocity 9' = 0. Dissipative forces destroy gyroscopic stabilization. 

In concludinq, let us consider the case when the motor is switched off and there are no 
resistive forces i5, 8/. From the integral (4.7), we find. 

and, using Routh's method 
energy 

The equations for the stationary motions of the rotor aW/ap = 0, aWi&,= fi admit of the 
solution (5.3) subject to the conditions 

of disregarding cyclic coordinates, we determine the changed potential 

(5.11) 

which, when the value of the constant integral (4.7) is 

c = w (r2 + 2 er COS y 4 h.07 

take the form (5.4). The conditions for an isolated minimum of the function (5.11), transformed 
taking account of the last equality 

are sufficient conditions for the stability of the stationary motion of the rotor which is 
being considered with respect to the variables p,8,p',0', 5'. Conditions (5.12) can only be 
satisfied in the case of the first regime of stationary motion, when y = 0. We note /2/ 
that, if conditions (5.7) are satisfied, conditions (5.12) are also satisfied. 

The author thanks D.R. Merkin for discussing the paper and for valuable remarks. 
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